Tracking NF-κB activity in tumor cells during ovarian cancer progression in a syngeneic mouse model
نویسندگان
چکیده
BACKGROUND Nuclear factor-kappa B (NF-kappaB) signaling is an important link between inflammation and peritoneal carcinomatosis in human ovarian cancer. Our objective was to track NF-kappaB signaling during ovarian cancer progression in a syngeneic mouse model using tumor cells stably expressing an NF-kappaB reporter. METHODS ID8 mouse ovarian cancer cells stably expressing an NF-kappaB-dependent GFP/luciferase (NGL) fusion reporter transgene (ID8-NGL) were generated, and injected intra-peritoneally into C57BL/6 mice. NGL reporter activity in tumors was non-invasively monitored by bioluminescence imaging and measured in luciferase assays in harvested tumors. Ascites fluid or peritoneal lavages were analyzed for inflammatory cell and macrophage content, and for mRNA expression of M1 and M2 macrophage markers by quantitative real-time RT-PCR. 2-tailed Mann-Whitney tests were used for measuring differences between groups in in vivo experiments. RESULTS In ID8-NGL cells, responsiveness of the reporter to NF-kappaB activators and inhibitors was confirmed in vitro and in vivo. ID8-NGL tumors in C57BL/6 mice bore histopathological resemblance to human high-grade serous ovarian cancer and exhibited similar peritoneal disease spread. Tumor NF-kappaB activity, measured by the NGL reporter and by western blot of nuclear p65 expression, was markedly elevated at late stages of ovarian cancer progression. In ascites fluid, macrophages were the predominant inflammatory cell population. There were elevated levels of the M2-like pro-tumor macrophage marker, mannose-receptor, during tumor progression, and reduced levels following NF-kappaB inhibition with thymoquinone. CONCLUSIONS Our ID8-NGL reporter syngeneic model is suitable for investigating changes in tumor NF-kappaB activity during ovarian cancer progression, how NF-kappaB activity influences immune cells in the tumor microenvironment, and effects of NF-kappaB-targeted treatments in future studies.
منابع مشابه
Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy characterized by the frequent development of resistance to platinum chemotherapy. Finding new drug combinations to overcome platinum resistance is a key clinical challenge. Thymoquinone (TQ) is a component of black seed oil that exerts multiple anti-tumorigenic effects on cells, including inhibition of NF-κB and promotion of DN...
متن کاملNF-κB-Mediated CCL20 Reigns Dominantly in CXCR2-Driven Ovarian Cancer Progression
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We previously demonstrated that CXCR2-driven ovarian cancer progression potentiated NF-κB activation through EGFR-transactivated Akt. Here, we identified the chemokine signature involved in CXCR2-driven ovarian cancer progression using a mouse...
متن کاملNF-κB Inducing Kinase, a Central Signaling Component of the Non-Canonical Pathway of NF-κB, Contributes to Ovarian Cancer Progression
Ovarian cancer is one of the leading causes of female death and the development of novel therapeutic approaches is urgently required. Nuclear factor-κB (NF-κB) is constitutively activated in several types of cancer including ovarian cancer and is known to support the survival of cancer cells. However, molecular mechanisms of persistent activation of NF-κB in ovarian cancer remain largely unknow...
متن کاملCXCR2-Driven Ovarian Cancer Progression Involves Upregulation of Proinflammatory Chemokines by Potentiating NF-κB Activation via EGFR-Transactivated Akt Signaling
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We therefore investigated molecular mechanisms involved in CXCR2-driven cancer progression by comparing CXCR2 positive and negative ovarian cancer cell lines. Stably CXCR2 transfected SKOV-3 cells had a faster growth rate as compared to contro...
متن کاملElevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling
Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and ...
متن کامل